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Table 4. Mean (Min.-Max.) genetic distance

Species 1.

C. castaneus

2.

C. sp.

4. 5.

C. laevis, 10* C. laevis, 11** C. heptacanthus C. urotaenia

0.003
(0.000-0.007)

0.160
(0.145-0.175)

0.204
(0.187-0.221)

0.210
(0.186-0.226)

0.502
(0.473-0.523)

1.565

(1.541-1.587)

2. 0.001

(0.000-0.001)
0.114

(0.113-0.115)
0.198

(0.194-0.201)
0.478

(0.474-0.482)
1.573

(1.546-1.591)

3. — 0.194 0.311 1.568

(1.558-1.575)

4. — 0.375 1.395

(1.372-1.425)

5.

6.

1.315

(1.294-1.335)

0.008
(0.002-0.018)

7.

Lake Hatirou-gata. **; Koma River.

Table 5. Estimates of genetic variability in genus Chaenogobius

Species
Population

No.
No. of alleles

per locus
%

polymorpic loci

Average heterozygosity
(expected)

C. castaneus 1 1.467 26.7 0.061

2 1.267 20.0 0.052

3 1.267 13.3 0.043

4 1.067 6.7 0.031

5 1.200 20.0 0.061

6 1.133 13.3 0.052

Mean 1.234 16.7 0.050

C. sp. 7 1.133 13.3 0.033

8 1.200 6.7 0.036

9 1.067 6.7 0.023

Mean 1.200 8.9 0.031

C. laevis 10 1.467 26.7 0.058

11 1.067 6.7 0.027

C. heptacanthus

C. urotaenia

C. sp.l

C. sp.2

C. isaza

Overall mean

12

13

14

15

16

Mean

17

18

19

20

21

22

Mean

23

1.200

1.067

1.067

1.067

1.133

1.084

1.200

1.067

1.067

1.067

1.067

1.067

1.067

1.200

1.157

6.7

6.7

6.7

6.7

13.3

8.4

0.0

6.7

6.7

6.7

6.7

6.7

6.7

13.3

10.7

0.022

0.015

0.015

0.033

0.048

0.028

0.010

0.009

0.013

0.015

0.006

0.012

0.011

0.062

0.032
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between Chaenogobius species

7. 8. 9.

C. sp. 1 C. sp. 2 C. isaza

1.286
(1.272-1.301)

1.570
(1.545-1.589)

1.529
(1.531-1.562)

1.310
(1.305-1.319)

1.577
(1.549-1.593)

1.554
(1.535-1.566)

1.290 1.574

(1.566-1.577)
1.549

1.146 1.376

(1.372-1.386)
1.352

1.301

(1.296-1.306)
1.593

(1.591-1.595)
1.567

0.237
(0.227-0.249)

0.225
(0.206-0.252)

0.103
(0.092-0.120)

— 0.414
(0.401-0.412)

0.358

8. 0.000
(0.000-0.001)

0.235
(0.232-0.242)

9. —
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should supply significant information to establish the taxono-

mic relationship between them.

Three species of C. urotaenia, C. sp.l and C. sp. 2 were

confirmed that they were different species each other. Gene-

tic distances between them ranged from 0.225 to 0.412 on

average. These values are large, indicating that they are

different species. C. urotaenia and C. sp. 2, distributing

sympatrically at the four rivers in the Shimane Prefecture,

had different alleles at the Sod locus and at the Mdh locus

from each other and no heterozygote at these loci was

observed through this study. Ecological study also showed

that they are ethologically isolated [10].

This study revealed phylogenetic position of C. isaza

which is specialized to land-locked freshwater and endemic to

Lake Biwa. It was closely related to C. urotaenia, amphid-

romous species as previously suggested [11]. Weused the

estimation of divergence time from genetic distance proposed

by Nei [18], t=5xl0 6D. It suggested that C. isaza was

differentiated from C. urotaenia about 0.5 million years ago.

This time agrees with the origin of other endemic species in

Lake Biwa, which was suggested by fossil records [25, 26]

Isozyme polymorphisms supplied the information on

population system in some species. The comparison be-

tween populations within three amphidromous species, C.

castaneus, C. urotaenia and C. sp. 2, showed that the dif-

ferentiation of populations did not reflect the geographic

distance between populations from different rivers (data was

not shown). This suggests that genetic mixture between

populations occurs when larvae go down to the sea and they

have no behavioral character to return to the river where they

were born. This study indicates the effectiveness of applica-

tion of isozyme polymorphism to ecological study of Chaeno-

gobius species that have various life histories.

10

11

12

13

14

15
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ABSTRACT—To examine the hybrid origin hypothesis of Rana porosa porosa cytogenetically, the lampbrush chromo-

somes of triparental allotriploids comprising the genomes of R. nigromaculata, R. p. brevipoda, and R. p. porosa were

investigated together with those of their intra- and interspecific hybrids. The behavior of their homologous lampbrush

chromosomes provided little evidence that chromosomal material from R. nigromaculata is present in the genomic

chromosomes of R. p. porosa. On the contrary, it is suggested that R. p. porosa and R. nigromaculata are

phylogenetically more distant than are R. p. brevipoda and R. nigromaculata.

INTRODUCTION

With respect to the differentiation of Rana porosa porosa

Cope, Moriya [13] and Kawamura and Nishioka [4-6] prop-

osed the hypothesis of hybrid origin between R. nigromacula-

ta Hallowell and R. p. brevipoda Ito. This hypothesis was

supported by Kuramoto [7], but questioned by Matsui and

Hikida [12]. Recently, Nishioka et al. [17] offered support

for the hypothesis from electrophoretic analysis, though the

support was not without a tinge of interested consideration.

Although I was a collaborator of the latter paper, I now

question the hybrid origin hypothesis in view of the fact that

the lampbrush chromosomes of R. p. porosa closely resemble

those of R. p. brevipoda, and yet there are no landmarks

derived from R. nigromaculata throughout their axes (unpub-

lished).

The hybrid origin should be demonstrated by comparing

the behavior of lampbrush chromosomes in diploid hybrids

between the above-mentioned three taxa, because the num-

ber of chiasmata that control the behavior of lampbrush

chromosomes changes in accordance with the extent of

similarity between the homologues of parental species [9, 14,

20]. Similarly, when the genomic chromosomes of these

three taxa are placed together in an oocyte, provided that R.

p. porosa receives many dominant and recessive genes from

R. nigromaculata as suggested by Kawamura and Nishioka

[4], some of the chromosomes of R. p. porosa should join

inevitably to those of R. nigromaculata and act as a mediator

in formation of trivalents.

The lampbrush chromosomes of R. nigromaculata are

easily distinguished from those of R. p. brevipoda [16] and R.

p. porosa (unpublished) by size, type, and position of the

landmarks. Thus, the lampbrush chromosomes of tri-

parental allotriploid females were examined to cytogenetical-

ly determine the relative degree of synaptic affinity among the
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chromosomes of these taxa together with those of their intra-

and interspecific hybrid females. This paper describes these

results and a new hypothesis of the differentiation of R. p.

porosa is proposed.

MATERIALSANDMETHODS

The female frogs studied are described in Table 1 . The paren-

tal frogs for crosses were from the lineages of R. p. brevipoda

collected from Konko, Okayama Prefecture, R. p. porosa from

Machida, a city of Tokyo, and R. nigromaculata from Hiroshima.

The frogs were crossed by artificial fertilization. Autotriploid frogs

were produced by cooling the fertilized eggs of R. p. brevipoda to

= 1°C for 2 hrs. Two kinds of allotriploid frogs were produced by

inseminating a few diploid ova which brevipoda £ X nigromaculata $

hybrid females spawned with spermatozoa of the two subspecies.

Tadpoles were fed on boiled spinach or chard, and frogs were fed on

houseflies or tropical crickets.

Lampbrush chromosomes were removed from the ovarian eggs

of two-year-old females just prior to hibernation (November) accord-

ing to Gall's method with a slight modification [1, 20], and examined

under a phase-contrast microscope. The abbreviations B, P, and N
refer to brevipoda, porosa, and nigromaculata chromosomal sets,

respectively. The letters in parentheses indicate the sources of

cytoplasm. Chiasma frequencies per oocyte were compared using

Student's or Aspin-Welch's Mest. Chi-square test also was used for

the comparison of chiasma numbers in two kinds of allotriploids.

RESULTS

Autotriploid (B)BBB
Lampbrush chromosomes from 60 oocytes were analyzed

in detail. All the oocytes contained 39 lampbrush chromo-

somes consisting of 13 triplets of homologues that belonged to

five large chromosomes numbered 1 to 5 and eight small

chromosomes numbered 6 to 13. These lampbrush chromo-

somes formed eight or more trivalents in all the oocytes; it

was notable that those of six oocytes formed exclusively 13

trivalents (Table 2). All the chromosomes other than those
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Table 1. Kind, origin, and number of female frogs used in the present study

Kind
Parental Origin

Female Male

Number of

females

Autotriploid

(B)BBB (3n = 39)

Allotriploid

(B)BBN (3n=39)

Allotriploid

(B)BPN (3n=39)

Diploid hybrid
(P)PB (2n = 26)

Diploid hybrid

(P)PN (2n=26)

Diploid hybrid
(N)NP (2n=26)

Non-hybrid
(P)PP (2n = 26)

R. p. brevipoda

brevipoda %X nigromaculata $

brevipoda -£ X nigromaculata $

R. p. porosa

R. p. porosa

R. nigromaculata

R. p. porosa

R. p. brevipoda

R. b. brevipoda

R. b. porosa

R. p. brevipoda

R. nigromaculata

R. p. porosa

R. p. porosa

5

5

4

9

9

8

11

Table 2. Number of oocytes having tri-, bi- and univalents in

various combinations in the three kinds of triploids

No. of No. of No. of Kind
trivalents bivalents univalents (B)BBB (B)BBN (B)BPN

13

(39)

6

12

(36)

1

(2)
1

( 1)

16

11

(33)

2
(4)

2

( 2)

17

10

(30)

3

( 6)

3

( 3)

13

9

(27)

4

( 8)

4

(4)
4

8

(24) (10)

5

( 5)

4

7

(21)

6

(12)

6

(6)

6

(18)

7
(14)

7

( 7)

5

(15)

8

(16)

8

( 8)

4

(12)

9

(18)

9

( 9)

3

(9)
10

(20)

10

(10)

2

(6)
11

(22)

11

(11)

1

( 3)

12

(24)

12

(12)

13

(26)

13

(13)

39

(39)

Total 60

1

1

1

2

8 2

12 1

12 4

11 6

2 8

46 25

Numbers in parentheses show numbers of lampbrush chromo-

somes forming tri-, bi-, or univalents.

of the trivalents formed bivalents and univalents of the same

number.

The number of trivalents in chromosome Nos. 1 to 13 is

presented in Table 3. Of the 655 trivalents, 189 joined three

homologues in juxtaposition by four to 12 chiasmata and

rarely by terminal fusions (Fig. 1A). In 359 other trivalents,

two of the three homologues were joined by two to eight

chiasmata and the rest was joined to one of them by one to

three chiasmata, a terminal fusion, or both, in addition (Fig.

IB). In the remaining 107 trivalents, the three homologues

were joined in tandem by one or two chiasmata or a terminal

fusion (Fig. 1C).

In chromosome Nos. 1, 4, 6-9 and 12, the chiasma

frequencies were about 1.5 times higher than those of diploid

R. p. brevipoda (Table 4). Those of the remainder were

slightly lower than 1.5 times. The number of chiasmata in

each oocyte was between 35 and 76 (average, 55.0) in total.

Allotriploid (B)BBN
Lampbrush chromosomes from 57 oocytes were analy-

zed. Eleven of these oocytes, an aneuploid one (3n-2)

lacking the nigromaculata chromosomes of Nos. 2 and 8, and

10 hexaploid ones, were omitted from the analysis. The

remaining 46 oocytes contained 39 lampbrush chromosomes

consisting of one nigromaculata and two brevipoda chromo-

somes in each of. the 13 homologue triplets (Fig. 2). These

chromosomes formed one to five trivalents in 33 oocytes

(Table 2). The remaining 13 oocytes had no trivalents. All

the chromosomes other than those of the trivalents formed

bivalents and univalents of the same number, or simply

univalents; two oocytes contained only 39 univalents.

In 64 of the 65 trivalents, a nigromaculata chromosome

was always joined to one of the two brevipoda chromosomes

by one or two chiasmata, a terminal fusion, or both, in

addition (Table 3). The remaining one trivalent was seen in

chromosome No. 6 and arranged three homologues of, in

order, brevipoda, nigromaculata and brevipoda, which were

each joined by one chiasma in tandem. On the other hand,

in 507 triplets of homologues forming a bivalent and a

univalent, the bivalent always consisted of two brevipoda

chromosomes, and the univalent of a nigromaculata chromo-

some. In the remaining 26 triplets of homologues, they
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Table 3. Behavior of homologous lampbrush chromosomes in each of the 13 triplets in the three kinds of triploids

Kinds
Chromosome
behavior
in a triplet

Chromosome
1 2 3

no.

4 5 6 7 8 9 10 11 12 13

Total

(B)BBB b-b-b 54 57 58 55 53 46 52 48 46 47 44 44 51 655

b-b, b 6 3 2 5 7 14 8 12 14 13 16 16 9 125

Total 60 60 60 60 60 60 60 60 60 60 60 60 60 780

(B)BBN b-b-n

b-n-b

6 6 4 4 3 11

1

2 3 6 3 6 7 3 64

1

b-b, n 38 38 40 40 41 32 42 41 38 41 38 37 41 507

b, b, n 2 2 2 2 2 2 2 2 2 2 2 2 2 26

Total 46 46 46 46 46 46 46 46 46 46 46 46 46 598

(B)BPN b-p-n or p-b-n

b-n-p

3 4 3 4 2 2 4 1 2 1

1

3

1

2 31

2

b-p, n 14 12 14 13 17 14 14 12 16 15 15 13 14 183

b-n,p or p-n,b 1 1 1* 1 1* 5

b, p, n 8 8 8 8 8 8 8 8 8 8 8 8 8 104

Total 25 25 25 25 25 25 25 25 25 25 25 25 25 325

The abbreviations b, p, and n indicate brevipoda, porosa, and nigromaculata lampbrush chromosomes, respectively.

"-" indicates a connection between two homologues.
* Joining was effected between brevipoda and nigromaculata chromosomes.

Fig. 1. Microphotographs of trivalents of chromosome Nos. 3 (A)

and 10 (B and C) in an autotriploid, (B)BBB. Arrows indicate

the positions of chiasmata. c and s represent compound- and

simple-type giant loops, respectively. Bar=50/im.

remained as univalents.

In all the trivalents, nigromaculata and brevipoda

chromosomes were joined by 57 (3%) chiasmata in total

except for the terminal fusions. By contrast, joining of two

brevipoda chromosomes in the bivalents and trivalents was by

2033 (97%) chiasmata in total except for the terminal fusions.

The chiasma frequencies in chromosome Nos. 1 to 13

were about 1.2 times higher than those of diploid R. p.

brevipoda except in chromosome Nos. 11 and 13, though the

chiasmata for nigromaculata and brevipoda chromosomes

accounted for no more than 3% of the total (Table 4). The

number of chiasmata in each oocyte was between and 60

(average, 45.4) in total. This average value was different

from that of the diploid R. p. brevipoda (f=3.7, P<0.001) or

the autotriploid (B)BBB (t=4A, P<0.0001).

Allotriploid (B)BPN
Lampbrush chromosomes from 41 oocytes were analy-

zed. Sixteen of the 41 oocytes were seven aneuploid oocytes

of 3n-l (three), 3n-2 (two), and 3n-5 (two), and nine hexa-

ploid oocytes; all of which were omitted from the analysis.

In the remaining 25 normal triploid oocytes in which each

triplet of homologues consisted of one brevipoda, one porosa,

and one nigromaculata chromosomes, the lampbrush

chromosomes were somewhat similar in behavior to those of

the other allotriploid (B)BBN (Table 2). In 11 oocytes they

formed one to seven trivalents, while all the chromosomes

other than those of the trivalents formed bivalents and

univalents of the same number (Fig. 3). In six other oocytes

they formed 13 bivalents and 13 univalents. The remaining

eight oocytes had only 39 univalents.

Of the 33 trivalents, 31 joined a nigromaculata chromo-

some to either of the brevipoda and porosa chromosomes by

one or two chiasmata, a terminal fusion, or both, in addition

(Table 3). The remaining two trivalents arranged three


